
D3: A Collaborative Infrastructure for Aerospace Design

Joan Walton, Robert E. Filman*, Chris Knight, David J. Korsmeyer, and Diana D. Leet
NASA Ames Research Center, MS 269-2

Moffett Field, CA 94035
* Research Institute for Advanced Computer Science

t Science Applications International Corporation
{jdwalton I rfilman I cknight I dkorsmeyer I ddlee) @mail.arc.nasa.gov

Introduction
DARWIN is a NASA developed, Internet-based system
for enabling aerospace researchers to securely and re-
motely access and collaborate on the analysis of aero-
space vehicle design data, primarily the results of wind-
tunnel testing and numeric (e.g., computational fluid-
dynamics) model executions. DARWIN captures, stores
and indexes data; manages derived knowledge (such as
visualizations across multiple datasets); and provides an
environment for designers to collaborate in the analysis
of test results. DARWIN is an interesting application
because it supports high-volumes of data, integrates
multiple modalities of data display (e.g., images and
data visualizations), and provides non-trivial access
control mechanisms. DARWIN enables collaboration
by allowing not only sharing visualizations of data, but
also commentary about and views of data.

We are currently developing D3, the third genera-
tion of DARWIN [SI. Earlier versions of DARWIN
were characterized by browser-based interfaces and a
hodge-podge of server technologies: CGI scripts, ap-
plets, PERL, and so forth. But browsers proved difficult
to control, and a proliferation of computational mecha-
nisms proved inefficient and difficult to maintain. D3
substitutes a pure-Java approach for that medley: A
Java client communicates (though RMI over HTTPS)
with a Java-based application server. Code on the
server accesses information from JDBC databases, dis-
tributed LDAP security services, and a collaborative
information system (CORE, a successor of PostDoc
[l].) D3 is a three tier-architecture, but unlike “E-
commerce” applications, the data usage pattern sug-
gests different strategies than traditional Enterprise Java
Beans-we need to move volumes of related data to-
gether, considerable processing happens on the client,
and the “business logic” on the server-side is primarily
data integration and collaboration. With D3, we are
extending DARWIN to handle other data domains and
to be a distributed system, where a single login allows a
user transparent access to test results from multiple
servers and authority domains.

Background
Aerospace designers and engineers use DARWIN to
understand and remotely access the results of experi-
mental testing and numerical model analyses of aero-
space vehicle designs, principally aircraft in NASA’s
wind tunnels. Wind tunnel tests place a physical model
of a proposed aircraft in an enclosed space, blow 100-
600 mile-per-hour winds over the surface of that model,
and measure performance attributes such as lift, drag
and yaw. Sometimes lasting up to several months, a
wind tunnel experiment may measure close to 50,000
points, each recording up to a thousand variables. Nu-
merical model analyses employ techniques such as
computational fluid dynamics to determine these physi-
cal performance properties from virtual designs (e.g.,
CAD drawings.) Numerical solutions are computation-
ally resource intensive and can generate gigabyte-size
results.

DARWIN provides not only distributed, near-
real-time remote access to large volumes of data, but
also tools for data analysis, visualization, and collabora-
tion. DARWIN deals with such “real-world’ issues as
security requirements and the semantic inconsistency
endemic to extending legacy systems (Le. naming con-
ventions and variations in meaning).

The DARWIN system allows its users to access
aerospace data through a collection of displays and to
perform various analysis functions on that data. In a
typical session, a DARWIN user could perform the
following tasks:

Establish security context. On connecting to
the DARWIN web server, the user logs in with
her name and password. Our facility serves a
national community of aerospace designers.
Such customers are unenthusiastic about grant-
ing competitors access to data on their proprie-
tary designs. To address these concerns, all
communications with the web server take place
over secure http. Users are authenticated not
only by password, but also by IP address.

Browse. The DARWIN home page provides
overview screens for the available wind tunnel

1

M ‘IltOll ct . dl

tests and computational fluid
dynamics solutions. The only tests
the user sees are those for which he
or she is authorized. From these
screens the user can see which tests
are in the system, get basic
information about those tests, and
check the test’s bulletin board for
messages and related files. Figure 1
shows an example DARWIN home
page with wind tunnel tests
displayed.

An in-depth look at the data can be
performed by creating a dataset
review. The user selects the data of
interest via the browsing screens and
launches the review screen. The
review consists of two types of
tabular displays (data summary table
and sequence table) and a set of

Figure 1: DARWIN Home page with wind tunnel tests displayed.

plots. The user can choose which variables are
displayed in the tables and in the plots. Addi-
tional data points can be added to a review by
invoking the query screen and searching for
points of interest. Figure 2 shows a three-
dimensional plot of some wind-tunnel data.

Having selected the data to review and config-
ured the tables and plots, the user can save her
work into a DARWIN dataset. This structure
retains enough information for DARWIN to
recreate the review screen at a later time. Data-
sets are managed in a database on a per user ba-
sis.

Interact with the world. DARWIN is not just
a database retrieval and presentation mecha-
nism. It also provides two kinds of interaction:
real-time monitoring of in-progress testing and
collaboration with colleagues. While a wind
tunnel test is in progress, users can monitor its
progress via the live screen. The live screen has
the same tables and plots as the review plus
current status indicators, message board, and a
shared files “shelf.” The tables and plots are
updated every 20 seconds to show the latest
collected data. Figure 3 shows the live screen in
operation.

Wind tunnel test data are grouped into “time instants”
or points. For each point, the wind tunnel data acquisi-
tion system collects a large amount of information
about conditions in the tunnel and on the model. For
example, pressure taps on the model can reveal detail
about the flow characteristics at specific regions on the

model, and pressure sensitive paint can produce a con-
tinuous pressure surface map. Numeric data is stored on
the file system, and pressure sensitive paint results are
recorded with a camera and stored in image files.
DARWIN deals with a variety of file types, both text
and binary.

Wind tunnel test data are hierarchical. The set of
measurements about a model are a test. A given test can
be checked for different configurations (e.g., orienta-
tion of the model and specification and arrangement of
sensors), a given configuration can be checked for a
specific run, and for a run, data is collected at points.
There is data associated with each of these levels;
points have both the greatest volume and least regular
data.

The large volume of data associated with actual
tests has led to a design incorporating a meta-database.
This database is a relational database that stores infor-
mation about the test, configurations, runs and points.
The meta-database holds both data applicable to the
experiment as a whole and variables on which users are
likely to want to search. For example, tunnel conditions
such as wind speed, temperature and angle of attack of
the model are data applicable to the entire experiment.
Likewise, overall lift and drag apply to the model as a
whole. Because users may want to find, for example,
the data point with the greatest drag, that information is
also included in the meta-database. The data contained
in files produced by specialized measurement systems
are considered detail data. The meta-database stores the
locations of these files, and the time points with which
they are associated. However, to display this data, the
interface needs to retrieve the actual file.

2

L+

I Figure 2: The DARWIN Review Screen showing a 3-dimensional plot

Although DARWIN is an aerospace application, it
is also a generic application. What DARWIN does is
(1) present to distributed users large volumes of both
numeric and image data gathered from multiple sources
and (2) provide visualization tools for examining the
data, collaboration tools for working cooperatively with
the data, and real-time mechanisms for interacting with
ongoing activities. The DARWIN architecture and ex-
perience thus generalizes across domains with similar
(and simpler) problems. One of the goals of the D3 de-
velopment is to enable to application of the DARWIN-
like systems to domains besides aerospace vehicle de-
sign.

Design of D3
Critical requirements of D3 include the desire to per-
form complex interactive visualizations on the client, to
allow users to incorporate their own visualizations of
data, to access and download select portions of the raw
data, to avoid the delay associated with dynamically
downloading applets, to overcome. the interface limita-
tions of browsers, and to enforce access control rules
for data and studies. To understand these issues, it helps
to begin by elaborating the D3 meta-data model.

The D3 meta-data model is made up of models,
tests, configurations, runs and points. These are main-
tained in a database as relational tables, where the row
identifier (primary key) of a test is a foreign key in the
configuration table, the row identifier of a configuration
a foreign key of the run table, and so forth. While there

is some commonality among tests
about what the other columns of
these tables ought to be, there is
sufficient variety in the meta-
information needed about points that
many point attributes are stored in a
table of <point-id, property-name,
value> triples. The actual data
archived from a wind tunnel test is
also available for access and analysis
by the user; the location and display
attributes of the raw data are stored in
the meta-data model. A good exam-
ple of this is the pressure tap data.
For almost all wind tunnel tests,
pressure taps are used to measure the
pressure on the aircraft at given phy-
sical points. This data is stored as an
uncalibrated set of analog measure-
ments in a file. The actual calibration
file is also stored, and the location of
the pressure tap is stored in a third
file. All that is stored in the D3 data
model is the time instant a instru-

ment-type of “pressure tap” was recorded, the file loca-
tions of the data, and the particular protocol used to
access the remote files. The “business logic” of D3 is
required to know that (based upon the instrument-type)
the three files need to be retrieved, parsed, integrated,
and display in a default style.

At this point D3 uses another model to manage
“reviews” of the data. These “reviews” can be thought
of as similar to the concept of database views except
that in the instance of D3/DARWIN, not all of the data
resides in a relational database. Another aspect of re-
views are that they can be collected and personalized
into “studies”. Studies are objects unto themselves,
which can have arbitrary relationships with other stud-
ies and external files. (The current organization of stud-
ies is in a classical directory/file tree, though we plan to
experiment with other organizations.) Client applica-
tions want to see this organization of data, and can use
the data in unpredictable ways-for example, display-
ing a table of particular attributes of a set of configura-
tions, or plotting the results at selected points. In D3,
we are integrating CORE, the next generation of Post-
Doc [I], an in-house developed document management
system. This system that already manages documents,
W s and data files in a hierarchical directory struc-
ture will be used to similarly manage and share the D3
studies and reviews. CORE is discussed below.

Access control for wind tunnel data is currently
centered on tests. That is, one can see all configuration,
run and point data about a test if and only if one is al-
lowed access to that test. However, the data for all tests
are mixed in the same tables. Security requirements

3

therefore dictate that client programs
cannot be allowed to run random
queries at the test, configuration, run
and point tables. Studies must inherit
the arbitrary access control rela-
tionships of the meta-data.

The most straightforward way
to approach this problem is to give
the client application the illusion of
having resident the (access-control-
limited) wind tunnel data, and
arranging “behind the scenes” to
fetch the data from the server as
needed. Wind tunnel data is read-
only; studies and reviews can be
both read and written. In D3, the
client keeps a cache of the informa-
tion it has learned. The commu-
nication between the client and
server is phrased in terms of general
queries and responses that include
collections of arbitrary “facts” to be
filled into the client objects in
anticipation of their use.

~ This behind-the-scenes fetching
needs to be more efficient than

R I 1 m . R I .
T.* R m C U ~ M . (W T) 7.Y. PSP - v mmu,.. MY,..
110117 87 J I 1 I I 9 W t 2 3 M 000000 .00131~50 698151

ClrnrlwM.
id ~n cd.riM.imTi T.U. c, PSP no* m*l,h. Iu*l,*.

1901 7) U r l 9 l 9 9 9 4 2 O b M a 4 0 0 2 ~ 1 9 1 4 00092 0 99912

73 U r I 8 I 9 9 9 3 + Z F W a 4 00271992 400127 I 99m7

72 Ur I8 1999 I 36FW a 4 O O l 7 2 1 3 2 400127 6 00000

7 1 Url8 l999III)FM a 4 00172132 400127 6 00000

Figure 3: Live Screen. DARWIN also provides several collaboration
mechanisms for keeping in touch with team members. Users can post

messages and files associated with a particular test and can define mail
groups for sending group email and tracking the threaded conversations.

getting single items at a time. To display a table of ten
attributes of twenty items, we don’t want to make 200
calls from the client to the server. Requests need to be
generated that anticipate the data requirements of the
client. Examples of mechanisms for doing this would
include having the client explicitly ask for the data
needed (“I know I’m filling in this table, so I’ll get all
the data for the table at once.”), provide the context of a
request (“Here’s the stuff I’m working on now: the ob-
jects and columns. Give me what I need.”) or having
the server “learn” the access patterns of clients (“In this
situation, what’s usually asked for next is the following.
Send it ahead.”)

Currently the server logic has a straightforward
job. Its function is to get data from the databases and
remote file stores in response to client queries, integrate
and or synthesize client data, vet it against the permis-
sions of the particular user, and encode it for transmis-
sion to the client. Since vetting is required, client re-
quests are made in terms of the “full external name” of
objects (e.g., “test 43, configuration 12, run 5”). The
server keeps a cache that maps such names to primary
keys (that is, in this example, the row identifier of that
run). Elements in the cache for a particular user need no
other security; elements not in the cache are vetted for
access. (This mechanism also allows the client to save
its state in whatever way it likes, using the full names of
objects to restore another session.) Eventually, the
server will have to manage the “distributed data” prob-
lem of queries that can refer to more than one database

at more than one location, and will needed expended
logic to handle more complex tasks, such as the instiga-
tion of a complementary numerical analysis when ap-
propriate conditions are met in an experimental test.

The overall architecture of D3 is illustrated in
Figure 4: a client that sends requests to a server. That
server communicates with a variety of backend ele-
ments: a database of wind tunnel test results, a file sys-
tem of elements such as pressure-sensitive-paint images
or data files, a meta-database that points to these files,
an LDAP server storing user authentication and access
privilege information, and a collaborative system for
sharing “studies.” What’s interesting about this archi-
tecture is both its resemblance to classical three-tiered
internet applications and its differences. The classic
three-tiered architecture has (1) a thin client that com-
municates with a (2) web server; the web server re-
trieves and stores information on (3) the database. The
server sends HTML (or XML) pages to the client. The
client is just an interpreter of the “commands” on these
pages. The server incorporates the “business logic” of
the application. In the D3 model both the server and the
client have the “business logic”, distributed to leverage
client-side processing. Additionally, D3 has an addi-
tional layer below the database, where multiple data
servers may retain control and storage of the raw data
files. The client is thick, and drives the conversation
based on its needs. The client may request multiple files
from multiple data servers, the database and the col-
laborative systems, and display them however it likes.

4

1) 3

The current fashion is to implement the server in a
three-tier architecture these days as an Enterprise Java
Beans server, relying on ETB to manage the persistence
of “bean objects;” retrieving them from the database,
caching them on the server, and even providing a public
persona for them.

We investigated the EJB approach but rejected it
for now. EJB seems particularly appropriate for appli-
cations that deal with thin clients (for example, a web
browser), handle a row of the database at a time (for
example, the description of a single item in a commer-
cial catalog), where many rows are of common interest
(for example, when many people want to order the
same thing), where there is some useful processing to
be done on the server (for example, checking the order
consistency and recommending other things to buy).
Our thick client needs lots of data (for example, exam-
ining a spreadsheet-sized data collection or graphical
numeric visualization), can’t be allowed external access
to data objects without vetting, and needs to have data
sent to it in anticipation of future requests. On the other
hand, having passed the data to the client, the server
could be less likely to need it again (The client is keep-
ing its own cache. It remains to be seen if simultaneous
examination of the same wind tunnel data by different
clients will merit a server-side data cache.) Relying on
the EJB server to cache all of the user requested data on
the server could thus be an unneeded overhead. As-
sessment of the D3 prototype usage will help determine
the requirements for server caching.

Core
CORE [4] (Complex Object
Relationship Engine) is the next
generation of PostDoc. It is designed
to handle continuous and incremental
user enhancement of knowledge data,
such as metadata about stored docu-
ments and archived mailing list
communication, user extension of the
data model, and, for workflow
applications, user contributed appli-
cation logic.

A key feature of CORE is ad-
vanced access control and authentica-
authentication mechanisms.
Databases typically partition access
control on the table, object, or similar
large scale. This level of access
control is insufficient in an envi-
ronment where the atom of
manipulation by collaborators may be
individual metadata attributes. For
example, a document may have a

variety of attached attributes, such as owner, name,
keywords, description, and related documents. In a re-
view process, an additional attribute of “review rating”
may be addedmanipulated by the reviewers of the
document, who may have privileges to manipulate the
document’s other attributes. The important element
here is to provide variable granularity--control at the
appropriate level for each kind of data.

Few open standards exist for access control and
management architectures. However, an emerging stan-
dard has been established by the Web Distributed Au-
thoring and Versioning [9] Working Group that pro-
vides the level of control and flexibility required by the
redesigned PostDoc environment. Also, WebDAV is an
excellent target communication mechanism: the stan-
dards being developed are for client-server communica-
tions for web servers.

Related Work
Within NASA several systems have been developed
with remote access to aerospace data. In 1994, NASA
Ames Research Center developed a system called re-
mote access wind tunnel (RAWT) [51. In 1995, NASA
Glenn Research Center modified this concept to create
remote access control room (RACR). Both systems
were Unix only and used a commercial whiteboard pro-
gram called InPerson for Silicon Graphics machines
and X-windows. No database of information was de-
veloped, as the emphasis was remote access and col-
laboration.

Similarly, several data and documentation tools

Database I J - http, ftp. webdav,
iiop, rcp, jdbc, ...

Figure 4. The D3 architecture.

5

were developed at NASA Langley Research Center and
NASA Ames. These were PrISM, and ADAPT at Lang-
ley and PostDoc [11 at Ames. PrISM collected the wind
tunnel data into a database on a test by test basis and
provided a robust query capability to download the re-
sults to the user. No presentation or naming consistency
was developed under PrISM. ADAPT and PostDoc
were similar in that they were early web-based docu-
ment management systems. ADAPT focused upon cre-
ating secure access to encrypted documents. Any data
or documents were stored as an encrypted file with the
user required to have a decryption helper application for
the web browser to decrypt data to the desktop. Post-
Doc emphasized capturing and translating documents
into Adobe PDF files to broaden access to many plat-
forms. PostDoc originally only addressed security
through a user identifier and password scheme. It now
includes transport layer encryption over HTTPS con-
nections.

Of course, use of the Internet for database access,
collaboration, and real-time monitoring has many ante-
cedents. We mention four examples. Evans and Rogers
[2] report on using Java applets and CORBA to reim-
plement (parts of) an existing multi-user WWW appli-
cation, replacing the existing CGI scripts. They found
the appletICORl3A combination to be better at perform-

, ing client-side applications, to be easier to maintain, to
be simpler to program (because of the ability to retain
server-side state), to be more straight forward to deploy,
and to provide greater responsiveness.

Ly [6] describes Netmosphere ActionPlan, a web-
enabled project management product. Architecturally,
ActionPlan is a pair of client applets linked to a Java-
language server. A key element of Netmosphere was
the real-time, selective notification mechanism for
keeping information synchronized.

Itschner, Pommerell and Rutishauser [3] report on
the GLASS system, which uses internet technology to
monitor remote embedded systems. GLASS proxies
accumulate data from embedded system monitoring
devices and store this information on the database of a
server. Client applications, running in browsers with
Java applets, retrieve this data through CGI scripts on
the server.

Tesoriero and Zelkowitz [7] have developed the
WebME system, which uses a mediating query proces-
sor, metadata database, and wrappers on the informa-
tion repositories to direct queries to the appropriate
databases.

Closing Remarks

the third generation of the DARWIN system, based on a
multi-tier model involving a “thick” client, layers of
data access, and complex access-control on the server.
Critical issues in this development include efficiently
moving large amounts of data from the data stores to
the client, ensuring the access-control rules are fol-
lowed, and providing the users with an appropriate col-
laborative environment.

Acknowledgments
The authors would like to thank the DARWIN devel-
opment team for building quality applications and mak-
ing the project a success.

References
[l] Becema-Fernandez. I . , Stewart, H., Del Alto, M., and

Knight, C. Developing an Advanced Environment for
Collaborative Computing. Proc. Twelfth International
Florida Artificial Intelligence Research Symposium, Or-
lando, Florida, Menlo Park: AAAI Press, May 2000, pp.
154-1 58.

[2] Evans, E. and Rogers, D. Using Java Applets and
CORBA for Multi-User Distributed Applications. IEEE
Internet Computing I , 3 (May 1997) 43-55.

[3] Itschner, R., Pommerell, C., and Rutishauser, M.
GLASS: Remote Monitoring of Embedded Systems in
Power Engineering. IEEE Internet Computing 2. 3 (May

[4] Knight, C. and Aha, D. A Common Knowledge Frame-
work and Lessons Learned Module. in D. Aha and R.
Weber (Eds.) Intelligent Lessons Learned Sysrems: Pa-
pers from the AAAI Workshop, Technical Report Techni-
cal Report WS-00-03, Menlo Park: AAAI Press, 2000,

[5] Koga, D. J., Schreiner, J. A., Buning, P. G., Gilbaugh, B.
L., and George, M. W. Integration of Numerical and Ex-
perimental Wind Tunnel (IofNEWT) and Remote Access
Wind Tunnel (RAWT) Programs of NASA. 19Ih AIAA
Advanced Measurement and Ground Testing Technol-
ogy Conference, New Orleans, LA, June 1996, AIAA-

[6] Ly, E. Distributed Java Applets for Project Management
on the Web. IEEE Internet Computing I , 3 (1997) 21-27.

[7] Tesoriero, R., and Zelkowitz, M. A Web-based Tool for
Data Analysis and Presentation. IEEE Internet Comput-
ing 2, 5 (September 1998) 63-69.

[8] Walton, J. , Filman, R. E., and Korsmeyer, D. J. “The
Evolution of the DARWIN System.” 2000 ACM Sympo-
sium on Applied Computing, March 2000, Como, Italy,

1998) 46-52.

pp. 25-28.

96-2248.

pp. 971-977.

We have presented the DARWIN, a system for the col-
laborative use of wind tunnel and computational data in
aerodynamic design. We are currently constructing D3,

P I Web Distributed Authoring and Versioning (WebDAV)
Resources. 2000, http://www.webdav.org

6

